
Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

CSE 390B, Autumn 2022
Building Academic Success Through Bottom-Up Computing

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Debugging Strategies &
Code Generation

Strategies for Debugging Software, Compilers: Code
Generation, Two-Tier Compilation

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Lecture Outline

❖ Strategies for Debugging Software
▪ Debugging Process and The Scientific Method

❖ Compilers: Code Generation
▪ Generating Target Code from an AST

❖ Two-Tier Compilation
▪ Intermediate Programs and The Java Virtual Machine (JVM)

2

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Sources and Acknowledgements

❖ This is a subset and an adaptation of a CSE 331 lecture

❖ If you have taken CSE 331, you have seen this before
▪ Part of your task for Project 8
▪ This subject is closely connected to metacognition

❖ If you haven’t taken CSE 331, this is a helpful sneak peek
▪ Debugging is an important topic in many CSE courses

❖ Acknowledgements: CSE 331 instructors, notably Michael
D. Ernst, Hal Perkins, and more

3

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Debugging Pre-discussion

❖ How often do you run into bugs when writing programs?

❖ What is your debugging process?
▪ In other words, when you run into a bug, do you have strategies

that you consistently use to find it?
▪ For those who have taken 331, maybe think back to before you

had the debugging lecture

❖ What debugging strategies have you come across?

4

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

A Bug’s Life

❖ Software bug definitions:
▪ Defect – mistake committed by a human
▪ Error – incorrect computation
▪ Failure – visible error: program violates its specification

❖ Debugging starts when a failure is observed
▪ During testing
▪ In the field

❖ Goal is to go from failure back to defect

5

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Testing Versus Debugging

❖ Testing ≠ debugging
▪ Test: reveals existence of problem (failure)
▪ Debug: pinpoint location + cause of problem (defect)

❖ See CSE 331 for:
▪ How to write code that has fewer bugs (so less debugging)
▪ How to write code that is easier to test (so easier to reveal bugs)
▪ How to make testing easier (so you do it more often)
▪ How to write code that is easier to debug (so less time spent

debugging)

❖ These are all incredibly valuable engineering skills

6

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Last (Inevitable) Resort: Debugging

❖ Defects happen, people are imperfect
▪ Industry average: 10 defects per 1000 lines of code (?)

❖ Defects happen that are not immediately localizable
▪ Found during integration testing
▪ Or reported by user

❖ Cost of an error increases by orders of magnitude during
program lifecycle

7

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Debugging Lifecycle

❖ Step 1: Clarify symptom (simplify input), create “minimal”
test

❖ Step 2: Find and understand cause

❖ Step 3: Fix and understand why it works

❖ Step 4: Rerun all tests, old and new

8

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

The Debugging Process

❖ Step 1: Find small, repeatable test case that produces the
failure
▪ May take effort, but helps identify the defect and gives you a

regression test
▪ Do not start Step 2 until you have a simple repeatable test

❖ Step 2: Narrow down location and proximate cause
▪ Loop: (a) Study the data (b) hypothesize (c) experiment
▪ Experiments often involve changing the code
▪ Do not start Step 3 until you understand the cause

9

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

The Debugging Process

❖ Step 3: Fix the defect
▪ Is it a simple typo, or a design flaw?
▪ Does it occur elsewhere?

❖ Step 4: Add test case to regression suite
▪ Is this failure fixed? Are any other new failures introduced?

10

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Debugging and The Scientific Method

❖ Debugging should be systematic
▪ Carefully decide what to do instead of flail
▪ Keep a record of everything that you do
▪ Don’t get sucked into fruitless avenues

❖ Use an iterative scientific process:

11

Formulate a hypothesis

Design an experiment

Perform an experiment

Interpret results

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Debugging Example
// returns true iff sub is a substring of full

// (i.e., iff there exists A,B such that full=A+sub+B)

boolean contains(String full, String sub);

❖ User bug report: Cannot find string "very happy" in:
"Fáilte, you are very welcome! Hi Seán! I am

very very happy to see you all."

❖ Poor responses:
▪ Notice accented characters, panic about not knowing about

Unicode, begin unorganized web searches and inserting poorly
understood library calls, …

▪ Start tracing the execution of this example

❖ Better response: simplify or clarify the symptom

12

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Reducing Absolute Input Size

❖ Find a simple test case by divide-and-conquer

❖ Pare test down:
Cannot find "very happy" within

"Fáilte, you are very welcome! Hi Seán! I am
very very happy to see you all.”

"I am very very happy to see you all.”

"very very happy"

Can find "very happy" within

"very happy"

Cannot find "ab" within "aab"

13

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Reducing Relative Input Size

❖ Can you find two almost identical test cases where one
gives the correct answer and the other does not?

Cannot find "very happy" within

"I am very very happy to see you all."

Can find "very happy" within

"I am very happy to see you all.”

14

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

General Strategy: Simplify

❖ In general: Find simplest input that will provoke failure
▪ Usually not the input that revealed existence of the defect

❖ Start with data that revealed the defect
▪ Keep paring it down (“binary search” can help)
▪ Often leads directly to an understanding of the cause

❖ When not dealing with simple method calls:
▪ The “test input” is the set of steps that reliably trigger the failure
▪ Same basic idea

15

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Localizing a Defect

❖ Take advantage of modularity
▪ Start with everything, take away pieces until failure goes away
▪ Start with nothing, add pieces back in until failure appears

❖ Take advantage of modular reasoning
▪ Trace through program, viewing intermediate results

❖ Binary search speeds up the process
▪ Error happens somewhere between first and last statement
▪ Do binary search on that ordered set of statements

16

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Binary Search on Buggy Code

17

public class MotionDetector {
private boolean first = true;
private Matrix prev = new Matrix();

public Point apply(Matrix current) {
if (first) {

prev = current;
}
Matrix motion = new Matrix();
getDifference(prev,current,motion);
applyThreshold(motion,motion,10);
labelImage(motion,motion);
Hist hist = getHistogram(motion);
int top = hist.getMostFrequent();
applyThreshold(motion,motion,top,top);
Point result = getCentroid(motion);
prev.copy(current);
return result;

}
}

no problem yet

problem exists

Check
intermediate result
at half-way point

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Binary Search on Buggy Code

18

public class MotionDetector {
private boolean first = true;
private Matrix prev = new Matrix();

public Point apply(Matrix current) {
if (first) {

prev = current;
}
Matrix motion = new Matrix();
getDifference(prev,current,motion);
applyThreshold(motion,motion,10);
labelImage(motion,motion);
Hist hist = getHistogram(motion);
int top = hist.getMostFrequent();
applyThreshold(motion,motion,top,top);
Point result = getCentroid(motion);
prev.copy(current);
return result;

}
}

no problem yet

problem exists

Check
intermediate result
at half-way point

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Detecting Bugs in the Real World

❖ Real Systems
▪ Large and complex
▪ Collection of modules, written by multiple people
▪ Complex input
▪ Many external interactions
▪ Nondeterministic

❖ Replication can be an issue
▪ Infrequent failure
▪ Instrumentation eliminates the failure
▪ No printf or debugger

❖ Errors cross abstraction barriers
❖ Large time lag from corruption (error) to detection (failure)

19

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Heisenbugs

❖ In a sequential, deterministic program, failure is repeatable
❖ But the real world is not that nice…

▪ Continuous input/environment changes
▪ Timing dependencies
▪ Concurrency and parallelism

❖ Failure occurs randomly
▪ Depends on results of random-number generation
▪ Hash tables behave differently when program is rerun

❖ Bugs hard to reproduce when:
▪ Use of debugger or assertions makes failure goes away

• Due to timing or assertions having side-effects
▪ Only happens when under heavy load and once in a while

20

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Logging Events

❖ Log (record) events during execution as program runs (at
full speed)

❖ Examine logs to help reconstruct the past
▪ Particularly on failing runs
▪ And/or compare failing and non-failing runs

❖ But don’t spend too much time manually reading
enormous, confusing logs

21

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

More Tricks for Hard Bugs

❖ Rebuild system from scratch, or restart / reboot
▪ Find the bug in your build system or persistent data structures

❖ Explain the problem to a friend (or to a rubber duck)
❖ Make sure it is a bug

▪ Program may be working correctly and you don’t realize it

❖ Face reality
▪ Debug reality (actual evidence), not what you think is true

❖ And things we already know:
▪ Minimize input required to exercise bug (exhibit failure)
▪ Add more checks to the program
▪ Add more logging

22

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Where is the Defect?

❖ The defect is not where you think it is
▪ Ask yourself where it cannot be; explain why
▪ Self-psychology: look forward to being wrong!

❖ Look for simple easy-to-overlook mistakes first, e.g.,
▪ Reversed order of arguments
▪ Spelling of identifiers
▪ Same object vs. equal: a == b versus a.equals(b)
▪ Uninitialized data / variables
▪ Deep vs. shallow copy

❖ Make sure that you have correct source code!
▪ Check out fresh copy from repository; recompile everything
▪ Does a syntax error break the build? (it should!)

23

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

When Debugging Gets Tough

❖ Reconsider assumptions
▪ Debug the code, not the comments

• Ensure that comments and specs describe the code

❖ Start documenting your system
▪ Gives a fresh angle, and highlights area of confusion

❖ Ask for help
▪ We all develop blind spots
▪ Explaining the problem often helps (even to rubber duck)

❖ Walk away
▪ Trade latency for efficiency – sleep!
▪ One good reason to start early

24

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Key Debugging Concepts

❖ Testing and debugging are different
▪ Testing reveals existence of failures
▪ Debugging pinpoints location of defects

❖ Debugging should be a systematic process
▪ Use the scientific method

❖ Understand the source of defects
▪ To find similar ones and prevent them in the future

❖ Learn from the debugging process
▪ It’s inevitable and you have some control over how you approach

the frustration

25

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Debugging Post-discussion

❖ How might you change your debugging process after
learning about these debugging strategies?

❖ What is one debugging strategy you might use for
debugging the buggy AST nodes in Project 8? For other
projects?

26

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Five-minute Break!

❖ Feel free to stand up, stretch, use the restroom, drink
some water, review your notes, or ask questions

❖ We’ll be back at:

27

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Lecture Outline

❖ Strategies for Debugging Software
▪ Debugging Process and The Scientific Method

❖ Compilers: Code Generation
▪ Generating Target Code from an AST

❖ Two-Tier Compilation
▪ Intermediate Programs and The Java Virtual Machine (JVM)

28

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Software
Overview

x86, x86-64
ARM

RISC-V
HACK

Assembly
Language

Machine Code

Windows
Mac

Unix/Linux
Android
Hack OS

Operating
System

SOFTWARE
Assembler

Java Byte Code
Jack VM Code

Java
Python

C/C++
Jack

High-Level
Language

Intermediate
Language(s)

Compiler

Compiler

(VM Translator)
(Project 8)

Compiler

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

The Compiler: Implementation

30

Scanner Parser Type
Checker Optimizer Code

Generator

Break string into
discrete tokens:

etc.

IF (

==

ID(n)

NUM(0)

Verify the
syntax tree is
semantically
correct

Rearrange the
code to be
more efficient

Convert the syntax
tree to the target
language

Arrange tokens into
syntax tree:

+

x 10

public int fact(int n) {
if (n == 0) {
return 1;

} else {
return n * fact(n - 1);

}
}

High-Level Language

(fact)
@R0
M=M+1
@R1
D=A
@ifbranch
D;JEQ

Assembly Language

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Code Generation: The Task

❖ Convert the AST into target language code that produces
the same result

❖ Project 8 goal: Produce reliable, not efficient, compiler
❖ The tricky bit: Do it automatically for all possible

arrangements of code
▪ To stay sane, we’ll break the task down:
▪ Generate code for each node type in the AST

31

Abstract Syntax Tree

PLUS

NUM(2) NUM(3)

left right

@2
D=A
@3
D=D+A

Hack Assembly

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Compile Time vs. Run Time

32

Compile Time Run Time

PLUS

NUM(2) NUM(3)

left right

@2
D=A
@3
D=D+A

Hack Assembly

• Compiler (a Java program) is running

• Generates Hack instructions that will
be run later

• Know types of variables, but NOT the
values of variables or which code path
is taken

let x = 2 + 3;

Jack

• Output (a Hack program) is running on
the Hack computer

• Know value of variables, which code
path is taken

Behavior

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Code Generation: Example

❖ Here’s how you, a brilliant human, would likely translate
this syntax tree into Hack:

33

Abstract Syntax Tree

PLUS

NUM(2) NUM(3)

left right

Human
(genius)

@2
D=A
@3
D=D+A

Hack Assembly

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Code Generation: Example

❖ Here’s how you, a brilliant human, would likely translate
this syntax tree into Hack:

34

Abstract Syntax Tree

PLUS

NUM(2) NUM(3)

left right

@2
D=A
@3
D=D+A

Hack Assembly

@2
D=A
@R0
M=D
// save R0 somehow

@3
D=A
@R0
M=D

@R0
D=M
// restore R0
@R0
MD=D+M

Hack Assembly

Computer
(trying its

best)

Human
(genius)

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Code Generation: Example

❖ Why? Modularity: We can fit any expression in that slot,
as long as its result ends up in R0!

35

Computer
(actually, quite

clever!)

Abstract Syntax Tree

PLUS

NUM(2) NUM(3)

left right

N
U

M
(2

)
N

U
M

(3
)

PLU
S

@2
D=A
@R0
M=D

// save R0 somehow

@3
D=A
@R0
M=D

@R0
D=M
// restore R0
@R0
MD=D+M

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Code Generation: Example

❖ Why? Modularity: We can fit any expression in that slot,
as long as its result ends up in R0!
▪ Even another !

36

N
U

M
(2

)
N

U
M

(3
)

PLU
S

@2
D=A
@R0
M=D

// save R0 somehow

@3
D=A
@R0
M=D

@R0
D=M
// restore R0
@R0
MD=D+M

Abstract Syntax Tree

PLUS

NUM(2) PLUS

left right

NUM(1) NUM(2)

left right

PLUS

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Code Generation: Example

❖ Now, we need to save R0 somehow
▪ What if we save it in a temporary register? Let’s pick R2

37

Abstract Syntax Tree

PLUS

NUM(2) NUM(3)

left right

@2
D=A
@R0
M=D

@R0
D=M
@R2
M=D

@3
D=A
@R0
M=D

@R0
D=M
// restore (reverse)
@R0
MD=D+M

N
U

M
(2

)
N

U
M

(3
)

PLU
S

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Code Generation: Example

❖ Now, we need to save R0 somehow
▪ What if we save it in a temporary register? Let’s pick R2

Why won’t this always work?

38

Abstract Syntax Tree

PLUS

NUM(2) NUM(3)

left right

@2
D=A
@R0
M=D

@R0
D=M
@R2
M=D

@3
D=A
@R0
M=D

@R0
D=M
// restore (reverse)
@R0
MD=D+M

N
U

M
(2

)
N

U
M

(3
)

PLU
S

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

❖ It’s those pesky nested expressions! The outer PLUS saves
a value in R2, but the inner PLUS overwrites that value
during its computation

Code Generation: Example

39

@2
D=A
@R0
M=D

// save R0 in R2

@1
D=A
...
// save R0 in R2
...
@R0
MD=D+M

@R0
D=M
// restore R0 from R2 (!)
@R0
MD=D+M

N
U

M
(2

)
PL

U
S

PLU
S

Abstract Syntax Tree

PLUS

NUM(2) PLUS

left right

NUM(1) NUM(2)

left right

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Code Generation: Example

❖ Solution: Store “saved” values in a stack
▪ Not quite the same as “The Stack” or function

call stack frames (but used for a
similar reason)

❖ We’ll keep a stack starting at
memory address 1024
▪ R1 is our stack pointer: always stores

address of last used stack position
▪ No built-in Hack push: manually copy

to memory and increment R1

401025 (R0) (R0)

R1 1024 1025 1026 1027

@2
D=A
@R0
M=D

// push R0 to slot 0

@1
...
// push R0 to slot 1
...
// pop R0 from slot 1
@R0
MD=D+M

@R0
D=M
// pop R0 from slot 0
@R0
MD=D+M

N
U

M
(2

)
PL

U
S

PLU
S

Abstract Syntax Tree

PLUS

NUM(2) PLUS

left right

NUM(1) NUM(2)

left right

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

❖ What about variables?

❖ Just like Assembler: Generate symbol table with mapping
from variable names to spots in memory
▪ Arrays get more (contiguous) spots
▪ screen and keyboard are built-in array variables, allowing I/O

arr

Code Generation: Example

41

screen 16384

@261
D=M
@262
M=D

Hack Assembly

var int arr[5];
var int bar, star;

let bar = star;

Jack

star 262

bar 261

256

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Code Generation: Takeaways

❖ Code Generation task: Writing several small snippets of
Hack assembly
▪ But need to be very generalizable
▪ Whenever a PLUS expression is encountered, should generate

almost the same code

❖ Conventions make the task much easier
▪ For example, after any expression code runs, result should always

be stored in R0
▪ Then parent code can depend on it

42

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Lecture Outline

❖ Strategies for Debugging Software
▪ Debugging Process and The Scientific Method

❖ Compilers: Code Generation
▪ Generating Target Code from an AST

❖ Two-Tier Compilation
▪ Intermediate Programs and The Java Virtual Machine (JVM)

43

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Software
Overview

x86, x86-64
ARM

RISC-V
HACK

Assembly
Language

Machine Code

Windows
Mac

Unix/Linux
Android
Hack OS

Operating
System

SOFTWARE
Assembler

Java Byte Code
Jack VM Code

Java
Python

C/C++
Jack

High-Level
Language

Intermediate
Language(s)

Compiler

Compiler

(VM Translator)

“Real-World” Examples
Our ComputerKEY:

Project 8

Compiler

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Compiling Code: Single Tier

45

High-Level
Program

Device A Device B Device C Device D

Compiler
for A Compiler

for B
Compiler

for C

Compiler
for D

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Compiling Code: Two Tier

46

High-Level
Program

Device A Device B Device C Device D

VM Translator
for A

Intermediate
Program

VM Translator
for B

VM Translator
for C

VM Translator
for D

Compiler
for VM

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

The Java Virtual Machine (JVM)

47

Java Code

Device A Device B Device C Device D

JVM Runtime
for A

JVM

JVM Runtime
for B

JVM Runtime
for C

JVM Runtime
for D

Java
Compiler

Lecture 16: Debugging & Code Generation CSE 390B, Autumn 2022

Lecture 16 Reminders

❖ Next week: Operating Systems and Computer Networks

❖ Project Reminders
▪ Project 7, Part I (Midterm Corrections) due tomorrow (11/23)

at 11:59pm (no late days may be used)
▪ Project 7, Part II (Professor Meeting Report) due next Thursday

(12/1) at 11:59pm
▪ Project 8 (Debugging and Implementing a Compiler) released,

due two weeks from today (12/6) at 11:59pm

❖ Preston has office hours after class in CSE2 153
▪ Feel free to post your questions on the Ed board as well

48

